Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Results Phys ; 28: 104600, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1331209

ABSTRACT

Covid-19 (2019-nCoV) disease has been spreading in China since late 2019 and has spread to various countries around the world. With the spread of the disease around the world, much attention has been paid to epidemiological knowledge. This knowledge plays a key role in understanding the pattern of disease transmission and how to prevent a larger population from contracting it. In the meantime, one should not overlook the significant role that mathematical descriptions play in epidemiology. In this paper, using some known definitions of fractional derivatives, which is a relatively new definition in differential calculus, and then by employing them in a mathematical framework, the effects of these tools in a better description of the epidemic of a SARS-CoV-2 infection is investigated. To solve these problems, efficient numerical methods have been used which can provide a very good approximation of the solution of the problem. In addition, numerical simulations related to each method will be provided in solving these models. The results obtained in each case indicate that the used approximate methods have been able to provide a good description of the problem situation.

2.
Adv Differ Equ ; 2020(1): 585, 2020.
Article in English | MEDLINE | ID: covidwho-890119

ABSTRACT

Humans are always exposed to the threat of infectious diseases. It has been proven that there is a direct link between the strength or weakness of the immune system and the spread of infectious diseases such as tuberculosis, hepatitis, AIDS, and Covid-19 as soon as the immune system has no the power to fight infections and infectious diseases. Moreover, it has been proven that mathematical modeling is a great tool to accurately describe complex biological phenomena. In the recent literature, we can easily find that these effective tools provide important contributions to our understanding and analysis of such problems such as tumor growth. This is indeed one of the main reasons for the need to study computational models of how the immune system interacts with other factors involved. To this end, in this paper, we present some new approximate solutions to a computational formulation that models the interaction between tumor growth and the immune system with several fractional and fractal operators. The operators used in this model are the Liouville-Caputo, Caputo-Fabrizio, and Atangana-Baleanu-Caputo in both fractional and fractal-fractional senses. The existence and uniqueness of the solution in each of these cases is also verified. To complete our analysis, we include numerous numerical simulations to show the behavior of tumors. These diagrams help us explain mathematical results and better describe related biological concepts. In many cases the approximate results obtained have a chaotic structure, which justifies the complexity of unpredictable and uncontrollable behavior of cancerous tumors. As a result, the newly implemented operators certainly open new research windows in further computational models arising in the modeling of different diseases. It is confirmed that similar problems in the field can be also be modeled by the approaches employed in this paper.

3.
Chaos Solitons Fractals ; 140: 110176, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-679699

ABSTRACT

One of the common misconceptions about COVID-19 disease is to assume that we will not see a recurrence after the first wave of the disease has subsided. This completely wrong perception causes people to disregard the necessary protocols and engage in some misbehavior, such as routine socializing or holiday travel. These conditions will put double pressure on the medical staff and endanger the lives of many people around the world. In this research, we are interested in analyzing the existing data to predict the number of infected people in the second wave of out-breaking COVID-19 in Iran. For this purpose, a model is proposed. The mathematical analysis corresponded to the model is also included in this paper. Based on proposed numerical simulations, several scenarios of progress of COVID-19 corresponding to the second wave of the disease in the coming months, will be discussed. We predict that the second wave of will be most severe than the first one. From the results, improving the recovery rate of people with weak immune systems via appropriate medical incentives is resulted as one of the most effective prescriptions to prevent the widespread unbridled outbreak of the second wave of COVID-19.

4.
Chaos Solitons Fractals ; 138: 109971, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-549033

ABSTRACT

In this research, we are interested in predicting the epidemic peak outbreak of the Coronavirus in South Africa, Turkey, and Brazil. Until now, there is no known safe treatment, hence the immunity system of the individual has a crucial role in recovering from this contagious disease. In general, the aged individuals probably have the highest rate of mortality due to COVID-19. It is well known that this immunity system can be affected by the age of the individual, so it is wise to consider an age-structured SEIR system to model Coronavirus transmission. For the COVID-19 epidemic, the individuals in the incubation stage are capable of infecting the susceptible individuals. All the mentioned points are regarded in building the responsible predictive mathematical model. The investigated model allows us to predict the spread of COID-19 in South Africa, Turkey, and Brazil. The epidemic peak outbreak in these countries is considered, and the estimated time of the end of infection is regarded by the help of some numerical simulations. Further, the influence of the isolation of the infected persons on the spread of COVID-19 disease is investigated.

SELECTION OF CITATIONS
SEARCH DETAIL